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Abstract-This paper presents several expressions for the energy release rate in quasi-static elastic crack
growth. A reciprocal type of expression is derived for non-linear materials. As a result. the energy release
rate is related to the work done by the surface traction in a cyclic process.

I. INTRODUCTION
In quasi-static crack growth for hyperelastic materials the energy release rate E is often defined
to be the rate of change in potential energy of the entire body [lJ, or, more generally, by the
energy balance for an arbitrary region surrounding a crack tip [2, 3J. It is well known that, for a
smooth curved crack, such an E yields the limiting value of the J-integral as the crack tip is
approached, and for a straight crack, the J-integral actually gives e and is path independent as
long as the surface traction vanishes on the crack faces.

Our purpose is to derive alternative expressions for the energy release rate, We begin by
defining e by the energy balance for an arbitrary region surrounding a crack tip. Assuming a
special class of the stored energy functions we derive an integral expression of e, which is
reduced to Sanders' reciprocal type of expression[2J for the linear theory. For a general stored
energy function, we derive an alternative reciprocal type of expression for E; we find that it
generalizes the well known expression in [1] or [4J, which may be evaluated from load versus
load-point-displacement relationships for slightly different crack sizes. Finally, we related s to
the work done by the surface tractions in a cyclic process.

We remark that, even for the curved crack, the expressions we derive are path independent
and give E without a limiting process as long as the surface traction vanishes on the crack
faces.

2. BASIC EQUATIONS

To fix notation, we consider first a two-dimensional regular body e, which we identify with
the regular region of R2 it occupies in a fixed reference configuration. We assume that the body
is homogeneous hyperelastic, so that the (Piola-Kirchhoff) stress S(F) is the derivative-with
respect to the deformation gradient F-of a class C' stored energy function W(F):

S
= BW(F)

BF . (2.1)

Here F =Vy is the gradient of the deformation y(x) with respect to the material point x in e.
We will limit our discussion to quasi-static deformations in the absence of body forces: in

this instance S(x) obeys the equilibrium equation

div S= O. (2.2)

The above equations are appropriate to both the finite and infinitesimal theories of elasticity.
In the infinitesimal theory S is symmetric and W quadratic, but these restrictions are not
relevant to what follows.

3. PRELIMINARY DEFINITIONS. ASSUMPTIONS

We assume that B is bounded and contains an edge crack of negligible thickness, which is
allowed to extend with time in B. We note that B here need not be the entire body. The crack rg
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Fig. 1.

is modeled as a smooth, non-intersecting curve (see Fig. 1). Let cg/ denote the crack in 13 with the
length I(~ 10 > 0). We then assume that the traction s(= Sn)t and/or the displacement u on the
boundary of the body are changing with a parameter a(~ 0), so that the fields "'(x, I, a) of
interest, such as D, Sand W, will be defined at each x E 13\ cg" each l(~ 10), and a(~O). In what
follows, we write ",(I, a) or simply", for "'(x, I, a) or for t/l(F(x, I, a)).

We also assume the following:
(AI) '" is sufficiently smooth away from the crack and, except at the tip, are continuous up

to the crack from either side; in addition, "'(1,0) = 0 for all I~ '0 ;

(A2) u and au/aa are bounded; Wand aw/aa are integrable uniformly in a [5]; (We note
that aW/al is not, in general, integrable.)

(A3) the surface traction s vanishes on the crack and, given any bounded vector field v on 13,

lim f s . v ds = 0,
8-0 a06

where Os is the disc of radius 8 centered at the crack tip.

4. THE ENERGY RELEASE RATE

The function e defined by

f au aie(l, a) = s' - ds - - W da
aB al al B

(3.1)

is called the energy release rate.
We first consider a special class of materials with

w=m S · F
2

m: positive integer. (3.2)

In view of (A1)-(A3), we may use the divergence theorem (see lemma 3 in [5]) to get

rS· Fda = f s· y ds.
JB aB

(3.3)

Introducing (3.2) into (3.1) and using (3.3), we have the following

THEOREM 1

f {( m) ay mas }e(l, a)= 1-- s·----·y ds.
aB 2 al 2 al

(3.4)

tThe letter n designates the outward unit normal.
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Assuming the infinitesimal linear theory, we can reduce (3.4) to Sanders' reciprocal type of
expression[2].

For the general stored energy function W, we have

W(I, a) - W(lo,O) = (!.et) S(A, (3) . iJH~~, f3) dA +S(A, f3) . iJH~~ @) df3, (3.5)
Joo.O)

where H = F - 1 and the integral is clearly path independent in (I, a) space. Thus, noting that
aW/al (= S· (aHlal)) is not, in general, integrable on B\rt'/, we evaluate (3.5) by taking a special
path; such as (10, O)~(l, O)~(I, a) (see Fig. 2), so that we have

W(I, a) = f SU, (3) . aH~~ (3) df3 ( = Let iJ~~ f3) df3),

since, by (AI), W(lo, 0) = 0 and S(I,O) = 0 for all I~ 10, Then, in view of (Al)-(A3), we may use
the divergence theorem to get

1W(I, a) da =1r S(I, (3) . iJH(I, f3) df3 da = ( r s(l, f3) . iJu(l, f3) df3 ds. (3.6)
B BJo iJf3 JaB Jo iJf3

Introducing (3.6) into (3.1), we have

THEOREM 2

( f" (iJS iJu iJs iJU)
e(l, a) = JaBJo iJf3' at-a!' iJf3 df3 ds. (3.7)

This expression of e shows that the energy release rate may be evaluated from traction versus
traction-point-displacement relationships for slightly different crack sizes.

Remark 1. If B does not contain the crack, using the divergence theorem on smooth fields in
(3.7),

1(et (iJS aH iJS iJH)
e(l, a) = BJo iJf3' ar-at' iJf3 df3 da = 0,

since dW =S· (iJHliJ!) dl +S· (iJHliJf3) df3 is a total differential. Then e(/, a) =0 in (3.7) for
mally gives-for the non-linear material-an expression similar to the reciprocal theorem.

Remark 2. Let e be a unit vector which points to the direction of crack extending. Then the
J -integral defined by

J= L(We.n-s'VUe)dS
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is not, in general, path independent unless the crack is straight, since e . n = 0 on '(;/ E(l, a) in (3.4)
and (3.7) are on the other hand, path independent even if the crack is curved as long as s = 0 on e.g/
(see (3.1) with (2.1) and (2.2)).

Suppose B is the entire body and let

s = p(x. {3. Om. 8(x. (3. I) = u . m.

where m is a constant unit vector, so that 0.7) becomes

(3.8)

0.9)

Assume then that p is independent of I and let p = p(x, (3) and p = p(x, a). Also assume the
existence of the inverse ~ = p-1 for each x E aB and define 5(p, I) = 8(x, ~(f5), I).

Then 0.9) yields

COROLLARY I

= JiP
a5(p, I) d - d

E al P s.
aB 0

Similarly, exchanging the letter "s and p" for "u and 8" in 0.8) and in the discussions following
0.9). we have

COROLLARY 2

E = - J (Ii ap(8, I) dB ds.
aB Jo al

The expressions in the above Corollaries, excluding the integral on aB, are well known as an
alternative valid definition for the J-integral, which may be evaluated from load versus
load-point-displacement relationship for slightly different crack sizes (see [I] or [4]).

Let a = a(/) be continuous and piecewise smooth for 12: 10, Then, for 10 :::; 1* < I, (3.7) yields

d J{(I ri(A) (as au as au) }
E = dl aB Jt* Jo a{3 . aA - aA . a{3 d{3 dA ds,

'~.: ". "
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so that we may apply Green's theorem to the region in (I, a) space; the result is

THEOREM 3

e =.! ( (J s· dU) ds,
dl JaB l'

where du = (aula>..) d>.. +(au/al3) dl3 and 'Y denotes a piecewise smooth closed path such as Fig.
3.

Theorem 3 shows that the (total) released energy from the initial state (10,0) to (I, a) equals
the work done by the traction vector in a cyclic process, starting, S = 0, which ends up with the
unloading process such that a tends to zero with 1constantt (see Fig. 4).

tSee the similar discussions of Gurney and Hunt [6], Gurney and Ngan[7] and Bums et a/.[8], where the discussions are
confined to the load-displacement relation and are not concerned with the singularities near the tip.

Acknowledgements-The author wishes to express his sincere appreciation to Profs. M. E. Gurtin, T. Tokuoka and S.
Kobayashi for reading the manuscript and making a number of helpful suggestions.

REFERENCES
I. J. R. Rice, Mathematical analysis in the mechanic of fracture. An Advanced Treatise (Edited by H. Liebowitz), Vol. 2,

pp. 191-311. Academic Press, New York (1968).
2. J. L. Sanders, On the Griffith-Irwin fracture theory. J. Appl. Mechs. 27, 352 (1960).
3. M. E. Gurtin, On the energy release rate in quasi-static elastic crack propagation. 1. Elasticity 9, 187 (1979).
4. P. C. Paris, Fracture mechanics in the elastic-plastic regime. Flaw Growth and Fracture, ASTM STP 631, 3 (1977).
5. M. E. Gurtin and C. Yatomi, On the energy release rate in elastodynamic crack propagation. Arch. Rat. Mech. Anal. 74

231 (1980).
6. C. Gurney and J. Hant, Quasi-static crack propagation. Proc. Roy. Soc. A299,508 (1967).
7. C. Gurney and K. M. Ngan, Quasi-Static crack propagation in nonlinear structures. Proc. Roy. Soc. A325, 207 (1971).
8. S. 1. Bums, J-C. Pollet and C-LUN Chow, Non-linear fracture mechanics. Int. J. Fract. Mech. 14, 311 (1978).


